نوع مقاله : مقاله پژوهشی

نویسندگان

1 مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز.

2 گروه مهندسی آب- دانشکده کشاورزی- دانشگاه تبریز - تبریز- ایران

3 گروه مهندسی آب- دانشکده کشاورزی- دانشگاه تبریز- تبریز

4 مهندسی آب ،دانشکده کشاورزی ، دانشگاه تبریز

10.22103/nrswe.2023.20278.1013

چکیده

برآورد رواناب ناشی از وقوع بارندگی، گامی بسیار مهم در برنامه‌ریزی منابع آب به ویژه در آبخیزهای فاقد ایستگاه‌های هیدرومتری است. در این مطالعه به شبیه‌سازی بارش- رواناب ایستگاه آخولا واقع در حوضه آجی‌چای پرداخته شد و با استفاده از روش‌های داده‌کاوی و مقایسه عملکرد آنها، مناسب‌ترین مدل بارش-رواناب ارائه گردید. برای این منظور داده‌های مورد نظر (بارش، دبی، دما) بصورت ماهانه از سازمان‌های آب و هواشناسی استان‌های آذربایجان شرقی و غربی دریافت گردید. جهت شبیه‌سازی از مدل‌های داده‌کاوی جنگل تصادفی و شبکه عصبی مصنوعی استفاده گردید. مقایسه مقادیر رواناب ماهانه مشاهداتی با رواناب ماهانه تخمین زده شده توسط مدل‌ها با استفاده از معیارهای ارزیابی انجام شد. در این مطالعه مقادیر CC (ضریب همبستگی) برای مجموعه‌های تست در مدل جنگل تصادفی و شبکه عصبی مصنوعی به ترتیب برابر با 82/0و 86/0 تعیین گردید. تحلیل‌ نتایج نشان داد که برای ایستگاه آخولا مدل ANN عملکرد و کارایی بالاتری نسبت به مدل RF دارد. از نتایج دیگر این پژوهش می‌توان به سری زمانی بارش و رواناب ایستگاه طی 20 سال اخیر اشاره کرد. با توجه به تحلیل روند من-کندال، در طی این 20 سال روند مشخصی برای بارش بر روی حوضه آجی‌چای دیده نشد و نمودارهای سری زمانی نشان داد که بارش در این مناطق بصورت نوسانی بوده است. اما سری زمانی برای دبی آجی‌چای در ایستگاه آخولا، نشان داد که روند کاملاً نزولی برای جریان آب رودخانه ثبت شده است که در واقع دلیل کاهش دبی ورودی به دریاچه ارومیه و پایین آمدن تراز آب دریاچه می‌باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Rainfall-Runoff Modeling of Aji Chai Basin Using Random Forest and Artificial Neural Network Models

نویسندگان [English]

  • Zeinab Bigdeli 1
  • Abolfazl Majnooni Heris 2
  • Reza Delirhasannia 3
  • Sepide Karimi 4

1 Water department, Agriculture college Tabriz University

2 Water department - Agriculture College - Tabriz University- Tabriz

3 Water department- Agriculture College- Tabriz University - Tabriz.

4 Water department, Agriculture college , Tabriz University.

چکیده [English]

Estimating runoff due to rainfall is a very important step in planning water resources, especially in watersheds without hydrometric stations. In this study, the rainfall-runoff simulation of Akhola station located in the Ajichai basin was discussed and the most suitable rainfall-runoff model was presented by using data mining methods and comparing their performance. For this purpose, the desired data (rainfall, discharge, temperature) for this study were received monthly from the water and meteorological organizations of the East and West Azerbaijan provinces. Random Forest and Artificial Neural Network data mining models were used for simulation. The comparison of observed monthly runoff values with monthly runoff estimated by models was done using evaluation criteria. In this study, CC values ​​(correlation coefficient) for test sets in the random forest model and artificial neural network were determined as 0.77 and 0.86, respectively. The analysis of the results showed that the ANN model has a higher performance and efficiency than the RF model for the Akhola station. Among other results of this research, we can mention the time series of rainfall and runoff of the station during the last 20 years. According to the obtained graphs, during these 20 years, there was no clear trend for precipitation in the Ajichai basin, and the time series graphs showed that the precipitation in these areas was fluctuating. But the time series for Ajichai discharge at Akhula station showed that a completely downward trend was recorded for the river water flow, which is the reason for the decrease of the discharge entering Lake Urmia and the lowering of the lake water level.

کلیدواژه‌ها [English]

  • Rainfall-Runoff
  • Random Forest
  • Aji Chai Basin
  • Modeling
  • Machine Learning
  1. Adnan R.M., Yuan X., Kisi O., Adnan M., and Mehmood A. 2018. Stream flow forecasting of poorly gauged mountainous watershed by least square support vector machine, fuzzy genetic algorithm and M5 model tree using climatic data from nearby station. Water Resources Management, 32(14): 4469-4486. https://doi.org/10.1016/j.jhydrol.2019.124371.
  2. Breiman L. 1984. Classification and regression treesCA, wadsworth International Groups. Handbook of Data Mining and Knowledge Discovery, 248-276.  
  3. Breiman L. 2001. Random forests. Machine Learning, 45(1):5-32. http://dx.doi.org/10.1023/A:1010933404324
  4. Catani F., Lagomarsino D., Segoni S., and Tofani V. 2013. Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues. Natural Hazards Earth System Science, 13:2815-2831. https://doi.org/10.5194/nhess-13-2815-2013
  5. Dastorani M.T., Mahjoobi J., Talebi A., and Fakhar 2018. Application of machine learningapproaches in rainfall-runoff modeling (Casestudy: Zayandeh rood basin in Iran). Civil Engineering Infrastructures Journal, 51(2):293-310. http://dx.doi.org/10.7508/CEIJ.2018.02.004
  6. Dayhoff J.E. 1990. Neural network principles. Prentice-Hall International. U.S.A. 197.https://doi.org/10.1002/1097-0142(20010415)91:8+<1615::AID-CNCR1175>3.0.CO;2-L
  7. Ebrahimi Mohammadi S.H., Boshri M., and Ghaleh S. 2011. Modeling and prediction of monthly discharge stream (Case study: Qarasou river) 4th Iran Water resources management conference, Amir Kabir University of Technology Tehran (In Persian).
  8. Firat M., and Gungor M. 2006. River flow estimation using adaptive neuro-fuzzy inference system. Mathematics and Computers in Simulation, 75:87-96. https://doi.org/10.1016/j.matcom.2006.09.003
  9. Hassanzadeh Y., Abdi Kordani A., Shafiei Najd M., and Khoshtinat S. 2015. Daily streamflow forecasting of Nooranchay river using the hybrid model of artificial neural networks- principal component analysis. Water and Soil Science, 25(3):53-63 (In persion). https://doi.org/1016/j.matcom.2006.09.003
  10. Hosseini H. 1999. Artificial neural network model for determining flood hydrograph. Master's Thesis in Civil Engineering. Iran University of Science and Technology. 103.

https://doi.org/10.1002/widm.8

  1. Hussain D., and Khan, A.A. 2020. Machine learningtechniques for monthly river flow forecasting ofHunza river, Pakistan. Earth Science Informatics, 13: 939-949. https://doi.org/10.1007/s12145-020-00450-z
  2. Kendall M.G. 1975. Rank correlation methods, fourth ed. Charles Griffin, London.
  3. Khademi M., Fazloula R., and Emadi A. 2017. Investigation the ability of artificial neural network in simulation of rainfall-runoff process under the climate change conditions (Case study: Pashakola Babol Dam Basin). Journal of Watershed Management Research, 8 (16) :53-64.http://jwmr.sanru.ac.ir/article-1-903-en.html
  4. Khanna T. 1990. Foundation of neural networks. Addison-Wesley Publishing
    U.S.A. 327.
  5. Kisi O. 2010. Wavelet regression model for short-term streamflow forecasting, Journal of Hydrology, 389: 344-353. https://doi.org/10.1016/j.jhydrol.2010.06.013
  6. Kurtulus B., and Razack M. 2010. Modeling daily discharge responses of a large karstic aquifer using soft computing methods: Artificial neural network and neuro fuzzy, Journal of Hydrology, 381: 101-111. https://doi.org/10.1016/j.jhydrol.2009.11.029
  7. Lettenmaier D.P., Wood E.F. and Wallis J.R. 1994. Hydro-climatological trends in the continental United States, 1948–88. Journal of Climate, 7: 586–607. https://www.jstor.org/stable/26197880
  8. Lorrai M., and Sechi M.G. 1995. Neural nets formodeling rainfall-runoff transformation, Water Resources Management, 9:299-313. https://doi.org/10.1007/BF00872489
  9. Luce C. 2014. Runoff prediction in ungauged basins: synthesis across processes, places and scales: edited by günter blöschl, murugesu sivapalan, Thorsten Wagener, Alberto Viglione, and Hubert Savenije Cambridge University Press, 2013, 465 pp., ISBN: 978‐1107028180, 140(hardback), 112 (eBook). https://doi.org/10.1002/2014EO020025
  10. Mann H.B. 1945. Non-parametric test against trend. Journal of Econometrical, 13, 245-259.
  11. Nayak P.C., Sudheer K.P., Rangan D.M. and Ramasastri K.S. 2004. A neuro-fuzzy computing technique for modeling hydrological time series. Journal of Hydrology, 291(1-2):52-66. https://doi.org/10.1016/j.jhydrol.2003.12.010
  12. Nicodemus K.K. 2011. Letter to the Editor: On the stability and ranking of predictors from random forest variable importance measures. Briefings in Bioinformatics. 12: 369-373.
  13. Nilsson P., Uvo C.B., and Bentsen R. 2005. Monthly runoff simulation: comparing and combining conceptual and neural network models, Journal of Hydrology, 321: 344-363. https://doi.org/10.1016/j.jhydrol.2005.08.007
  14. Nourani V., M Keynezhad., and Makani L. 2009. Using adaptive neuro-fuzzy inference system rainfall-runoff modeling. Journal of Civil and Environmental Engineering, 39: 75-81 (In Persian). https://civilica.com/doc/63080
  15. Pham L.T., Luo L., and Finley A. 2021. Evaluation of random forests for short-term daily streamflow forecasting in rainfall-and snowmelt-driven watersheds. Hydrology and Earth System Sciences, 25(6):2997-3015.https://doi.org/5194/hess-25-2997-2021
  16. Phomcha P., Wirojanagud P., Vangpaisal T., and Thaveevouthti T. 2011. Suitability of SWATmodel for simulating of monthly streamflow inlam sonthi watershed. The Journal of Industrial Technology, 7(2): 49- 56.
  17. Poursalehi F., KhasheiSiuki A., and Hashemi S.R. 2022. Investigating the performance of random forest algorithm in predicting water table fluctuations compared with two models of decision tree and artificial neural network (Case study: unconfined aquifer of Birjand plain). Iranian Journal of Ecohydrology, 8(4): 961-974 (In Persian). https://doi.org/10.5194/hess-25-2997-2021
  18. Razavi T., and Coulibaly P. 2013. Streamflow prediction in ungauged basins: review ofregionalization methods. Journal of Hydrologic Engineering, 18(8): 958-975. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000690
  19. Sabouhi, R. and Soltani, S., 2008. Analysis of the climate trend in the major cities of Iran. Journal of Agricultural Science and Technology. 12(46):303-321 (In Persian).
  20. Salehi Bavil S, Zeinalzadeh K., and Hessari B. 2017. The changes in the frequency of daily precipitation in Urmia Lake basin, Iran. Journal of Theoretical and Applied Climatology, 1- 10. https://doi.org/10.1007/s00704-017-2177-7
  21. Serrano A., Mateos V.L., and Garcia J.A. 1999. Trend analysis of monthly precipitation over the Iberian Peninsula for the period 1921-1995. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere. 24(1-2): 85-90. https://doi.org/10.1016/S1464-1909(98)00016-1
  22. Shafeizadeh M., Fathian H., and Nikbakht Shahbazi A. 2019. Continuous rainfall-runoff simulation by artificial neural networks based on efficient input variables selection using partial mutual information (PMI) algorithm. Iran Water Resources Research, 15(2): 144-161. (In Persian). https://doi.org/1001.1.17352347.1398.15.2.12.1
  23. Sohrabi Geshnigani, Mirabbasi Najafabadi R., and Golabi M.R. 2021. Rainfall-Runoff modeling using HBV model and random forest algorithm in Bazfat watershed. Iranian Journal of Soil and Water Research, 52(5):1395-1407. )In Persian(. https://doi.org/10.22059/IJSWR.2021.318980.668893
  24. Toker A.S., and Markus M. 2000. Precipitation-runoff modeling using artificial neural network and conceptual models, Journal of Hydrologic Engineering, 5: 156-161. https://doi.org/1061/(ASCE)1084-0699(2000)5:2(156)
  25. Turgay P., and Ercan K. 2005. Trend analysis in turkish precipitation data. Hydrological Processes: An International Journal. 20(9): 2011-2026. https://doi.org/10.1002/hyp.5993
  26. Worland S.C., Farmer W.H., and Kiang J.E. 2018.Improving predictions of hydrological low-flowindices in ungagged basins using machine learning.Environmental Modelling and Software, 101:169-182. https://doi.org/10.1016/j.envsoft.2017.12.021
  27. Youssef A.M., Pourghasemi H.R., Pourtaghi Z.S., and Al-Katheeri M.M. 2015. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region. Saudi Arabia Landslides. https://doi.org/10.1007/s10346-015-0614-1.
  28. Zarei M., Zandi R., and Naemitabar M. 2022. Assessment of flood occurrence potential using data mining models of support vector machine, chaid and random forest (Case study: Frizi watershed). Journal of Wound Management and Research, 13 (25) :133-144. )In Persian(. http://jwmr.sanru.ac.ir/article-1-1140-en.html.