نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد هواشناسی کشاورزی، گروه مهندسی آب، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

2 گروه مهندسی آب، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری ، ایران

3 گروه مهندسی آب، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

10.22103/nrswe.2023.20333.1014

چکیده

بارش از عناصر بنیادی مطالعات آب­ وهواشناسی به ­شمار می­رود. به دلیل تعداد و تراکم محدود ایستگاه­ های باران سنجی و نبود ایستگاه هواشناسی در مناطق کوهستانی و سخت ­گذر، استفاده از محصولات بارش ماهواره­ای به عنوان ابزاری موثر در پیش­بینی توزیع مکانی منطقه ­ای بارش مورد توجه محققین قرار گرفته است. اما عیب آن خطای تخمین بالای بارش در منطقه است که نیاز به ارزیابی دقت این داده­ ها، قبل از استفاده است. برای این منظور بر مبنای داده­ های بارش 21 ایستگاه هواشناسی استان مازندران از سال 2018-1998، کارایی داده ­های بارش ماهواره TRMM و دو روش درونیابی کریجینگ و وزنی عکس فاصله مورد بررسی قرار گرفت. نتایج نشان داد بر خلاف همبستگی مناسب شبکه TRMM با داده ­های واقعی، این شبکه دارای خطا اریبی بالایی است. مثلاً در مورد داده ­های سالانه بارش، خطای اریبی شبکه به 70 میلی­متر رسید که تقریباً حدود 30 درصد خطای سالانه می­باشد. ضرایب اصلاح خطای شبکه در استان مازندران بین 0 و 2 بدست آمد که بیشتر ضرایب بالاتر از یک بود که بیانگر آن است که شبکه TRMM در مازندران عمدتاً دچار خطا کم برآوردی می­باشد. مقایسه دقت شبکه اصلاح شده TRMM با روش­ های درون­یابی مورد بررسی بیانگر آن بود که استفاده از شبکه اصلاح شده به جای روش­های درون­یابی در ترسیم نقشه­های همبارش، مقدار میانگین مربعات خطا سالانه بارش را از 237 به 186 میلی­متر کاهش می­دهد.

کلیدواژه‌ها

عنوان مقاله [English]

Investigating modification coefficients of TRMM rainfall network in Mazandaran province

نویسندگان [English]

  • Fateme Khorsandi 1
  • mehdi nadi 2
  • Abdollah Darzi-Naftchali 3

1 M.Sc student of Agrometeorology, Department of Water Engineering, faculty of Agricultural engineering, Sari Agricultural sciences and Natural Resources University, Sari, Iran.

2 Department of water engineering,, faculty of Agricultural engineering, Sari Agricultural sciences and Natural Resources University, Sari, Iran

3 Department of Water Engineering, Faculty of Agricultural engineering, Sari Agricultural sciences and Natural Resources University, Sari, Iran.

چکیده [English]

Precipitation is one of the basic elements of Hydrometeorological studies. Due to the limited number of rain-gauging stations and the lack of meteorological stations in highland area, the use of satellite rainfall products as an effective tool in predicting the regional spatial distribution of precipitation data has attracted the attention of researchers. But its disadvantage is the high estimation error of rainfall estimation, which requires accuracy evaluating before using. For this purpose, based on the rainfall data of 21 meteorological stations of Mazandaran province from 1998-2018, the performance of TRMM data and two interpolation methods of kriging and inverse distance weighting were investigated. The results showed that contrary to the proper correlation of TRMM data with observed data, this network has a high bias error. For example, in the case of annual rainfall data, the network bias error reached 70 mm, which is approximately 30% of the annual error. The modification coefficients of TRMM data were found between 0 and 2, that most of the coefficients were higher than one, which indicates the TRMM data in Mazandaran mostly has an underestimation error. The comparison of modified TRMM with the interpolation methods showed that using the modified network instead of interpolation methods in estimation of rainfall data reduces the mean square error of annual rainfall from 237 to 186 mm.

کلیدواژه‌ها [English]

  • Rainfall network modification
  • Kriging
  • Mazandaran
  • Inverse distance weighting
  1. Akhavan R., and Kleinn C. 2009. On the potential of kriging for estimation and mapping of forest plantation stock (case study: Beneshki plantation). Iranian Journal of Forest and Poplar Research, 17(2): 303-318 (In Persian).
  2. Akhavan R., Karami Khorramabadi M., and Soosani J. 2012. Application of kriging and idw methods in mapping of crown cover and density of coppice oak forests (case study: Kakareza region, Khorramabad). Iranian Journal of Forest, 3(4): 305-316 (In Persian).
  3. Ghazanfari Moghadam, M., Alizadeh, A., Mousavi baygi, M., Farid-Hosseini, A., and Bannayan Aval, M. 2011. Comparison the persiann model with the interpolation method to estimate daily precipitation (a case study: North Khorasan). Water and Soil, 25(1): 207-215 (In Persian).
  4. Ghaderpour E., Ben Abbes A., Rhif, M., Pagiataki S.D., and Farah I. R. 2020. Non-stationary and unequally spaced NDVI time series analyses by the lswave software. International Journal of Remote Sensing, 41: 6. 2374-2390 (In Persian).
  5. Ghahreman B., Zangeneh Inanloo M.R., and Farid Hoseini A.R. 2017. An evaluation of the accordance of modified TRMM satellite precipitation data with observational data in the shapour basin in the Fars province, Watershed Management Research, 121 (15): 44 -57 (In Persian).
  6. Guo H., Chen S.H., Bao A., Behrangi A., Hong Y., Ndayisaba F., Junjun, and Stepanian P.M. 2016. Early assessment of integrated multi-satellite retrievals for global precipitation measurement over China. Journal of Atmospheric Research, 176-177: 121-133.
  7. Hong Y., Ren L.L., Gourley J.J., Huffman G.J., Chen X., Wang W., and Khan S. 2012. Assessment of evolving TRMM based multi-satellite real-time precipitation estimation methods and their impacts on hydrologic prediction in a high latitude basin. Journal of Geophysics Research, 117: 108-115.
  8. Hosseini Moghari S.M., Iraqinejad SH. and Ebrahimi K. 2016. Evaluation of global rainfall bases and their application in drought monitoring-Case (Karkheh basin). Journal of Agricultural Meteorology, (2): 14-26 (In Persian).
  9. Huffman GJ., Adler RF., Bolvin DT., and Nelkin EJ. 2010. The TRMM multi-satellite precipitation analysis (tmpa). Satellite rainfall application for surface hydrology, Journal of Hydrometeorology, 11(2): 3-22.
  10. Moazemi S., Golian S., Kavianpour M.R., and Hong Y. 2013. Comparison of persiann and V7 TRMM multi- satellite precipitation analysis (TMPA) products with rain gauge data over Iran. International Journal of Remote Sensing. 34(22): 8156- 8171 (In Persian).
  11. Muller J.C.Y. 2014. Adapting to climate change and addressing drought learning from the red cross red crescent experiences in the horn of Africa. Weather and Climate extremes. 3: 31-36.
  12. Nadi M., and Baziyarpoor H. 2017. Evaluation and modification of aphrodite daily precipitation network in Golestan province, Journal of Water and Soil Conservation. 24(4): 273-286 (In Persian).
  13. Nadi M., and Dastigerdi M. 2022. Preparation of Mazandaran climate map by extended de martonne climate classification method. National conference on environmental change using remote sensing technology and GIS, Sari, Iran (In Persian).
  14. Nadi M., Jamei M., Bazrafshan J., and Janatrostami, S. 2012. Evaluation of different methods for interpolation of mean monthly and annual precipitation data (case study: Khuzestan Province), Physical Geography Research Quarterly, 44(4): 117-130 (In Persian).
  15. Nadi M., Khalili A., Pourtahmasi K., and Bazrafshan J. 2013. Comparing the various interpolation techniques of climatic data for determining the most important factors affecting the trees growth in the elevated areas of chaharbagh, Gorgan, Forest and Wood Products, 66(1): 83-95 (In Persian).
  16. Sharifi E., Steinacker R., and Saghafian B. 2016. Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: Preliminary Results. Remote Sensing, 8(135): 68-79 (In Persian).
  17. TRMM Data Users Handbook, National Space Development of Japan, 2001, Landsat Technical guide, GLCF, University of Maryland.
  18. Yousefi Kebriya A., Nadi M., and Jamei M. 2022. Combining interpolation methods and precipitation products of TRMM satellite to increase the accuracy of rainfall maps in Mazandaran province. Journal of Water and Soil Conservation, 28 (3): 49-70 (In Persian).
  19. Yousefi Kebriya A., Nadi M, and Jamei M. Investigation of statistical and geostatistical methods in preparing the rainfall map of Mazandaran province. Journal of Watershed Management Research, 12(23): 212-223 (In Persian).
  20. Zabihi M., MostafaZadeh R., and Sharari M. 2017. Analysis of wet and dry spells intensity and duration using precipitation-based and evapotranspiration influenced indices, Journal of Watershed Management Research, 8(15): 125-136 (In Persian).