نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی و مدیریت منابع آب، دانشکده مهندسی عمران و محیط زیست، دانشگاه تربیت مدرس، تهران، ایران

2 استادیار دانشکده مهندسی عمران و محیط زیست، دانشگاه تربیت مدرس، تهران، ایران

3 استاد گروه علوم و مهندسی آب دانشکده کشاورزی، دانشگاه بیرجند، بیرجند،ایران

10.22103/nrswe.2023.20384.1016

چکیده

برداشت بی­رویه از منابع آب زیرزمینی به عنوان یک منبع ضروری برای مصارف شرب، مخصوصاً در مناطق خشک و نیمه خشک، کیفیت آن را تهدید می­ کند. کیفیت پایین آب‌های زیرزمینی به دلیل نفوذ آب شور به سفره‌های زیرزمینی، سلامت انسان را تحت تأثیر قرار می‌دهد، بنابراین ارزیابی کیفیت آب‌های زیرزمینی امری مهم است. در تحقیق حاضر نتایج ارزیابی کیفیت آب زیرزمینی برای مصارف شرب در آبخوان دشت بیرجند واقع در استان خراسان­ جنوبی با استفاده از شاخص آلودگی آب­های زیرزمینی (PIG) ​​توضیح داده شده است. در این مطالعه داده های کیفی PH، TDS، منیزیم، سدیم، کلسیم، کلر، نیترات، فلوراید، بی­کربنات، سولفات و پتاسیم مربوط به 20 حلقه چاه برای سال 1398-1399 جمع آوری شد. به ­­منظور محاسبه شاخص PIG نقشه پارامترها با استفاده از روش درون­یابی مناسب (کریجینگ و IDW) بر مبنای خطای RMSE و R2 در محیط ArcGIS تهیه و از استاندارد آب شرب WHO، به عنوان رهنمود استفاده شد. با توجه به وجود اثرات محلی پارامترهای مختلف و وجود برخی پارامترهای کیفی غالب در سطح آبخوان، برای افزایش دقت الگوی PIG از روش تحلیل سلسله مراتبی (AHP) برای اصلاح وزن ­ها و توسعه یک شاخص بهینه محلی استفاده شد. نقشه شاخص آلودگی اصلاح شده (LPIG)، مقدار شاخص را درحدود 5/5-8/0 گزارش می­دهد و سطح کیفی آبخوان را به 5 دسته با آلودگی ناچیز، کم، متوسط، زیاد و خیلی­ زیاد تقسیم می­کند که به ­ترتیب 7/9، 5/15، 9/35، 9/23 و 1/15 درصد از سطح منطقه را پوشش می­دهد. آلودگی زیاد و بسیار­زیاد نواحی غرب و جنوب­ غرب آبخوان به فعالیت ­های کشاورزی دراین نواحی مرتبط است.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of groundwater quality for drinking purpose in birjand aquifer using PIG index and modified LPIG index based on AHP method

نویسندگان [English]

  • melika rastgoo 1
  • Farzin Nasiri Saleh 2
  • Abbas Khashei Siuki 3

1 MSc. Student of Engineering and Water Resources Management, Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran

2 Assistant Prof, Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran

3 Professor, Department of Water Science and Engineering, Faculty of Agriculture ,University of Birjand, Birjand, Iran

چکیده [English]

Indiscriminate extraction of groundwater resources as an essential resource for drinking purposes, especially in arid and semi-arid regions, threatens the quality of these resources. Low quality of groundwater because of infiltration of salt water into aquifers, affects human health, so evaluating groundwater quality is important. In this paper the results of evaluating groundwater quality for drinking purpose in birjand aquifer, located in South Khorasan province, by using the pollution index of groundwater (PIG), have been explained. In this study, the qualitative data of PH, TDS, Mg, Na, Ca, Cl, NO3, F, HCO3, SO4, K related to 20 wells for 2019-2020 were collected. In order to calculate the PIG, the parameter map was prepared using the appropriate interpolation method (Kriging and IDW) based on the RMSE and R2 in ArcGIS and the WHO standard was used as a guide. Due to the existence of local effects of various parameters and the existence of some dominant quality parameters in the samples, to increase the accuracy of the PIG model, the Analytical Hierarchy Method (AHP) was used to modify the weights and develop a local optimal index. The computed values of the revised pollution index map (LPIG), varied from 0.8 to 5.5, and divides the quality level of the aquifer into 5 classes with insignificant, low, moderate, high and very high pollution, It covers 9.7%, 15.5%, 35.9%, 23.9% and 1.15% of the area, respectively. A high pollution in the western and southwestern areas of the aquifer is attributed to agricultural activities in these areas.

کلیدواژه‌ها [English]

  • Birjand aquifer
  • Groundwater quality
  • AHP
  • LPIG
  • PIG
  1. Achu A.L., Thomas J., and Reghunath R. 2020. Multi-criteria decision analysis for delineation of groundwater potential zones in a tropical river basin using remote sensing, GIS and analytical hierarchy process (AHP). Groundwater for Sustainable Development, 10,100365. https://doi.org/10.1016/j.gsd.2020.100365
  2. Adimalla N., Qian H., and Nandan M.J. 2020. Groundwater chemistry integrating the pollution index of groundwater and evaluation of potential human health risk: A case study from hard rock terrain of south India. Ecotoxicology and Environmental Safety, 206, 111217. https://doi.org/10.1016/j.ecoenv.2020.111217
  3. Aykut T. 2021. Determination of groundwater potential zones using geographical information systems (GIS) and analytic hierarchy process (AHP) between Edirne-Kalkansogut (northwestern Turkey). Groundwater for Sustainable Development, 12, 100545. https://doi.org/10.1016/j.gsd.2021.100545
  4. Babiker I.S., Mohamed M.A., and Hiyama T. 2007. Assessing groundwater quality using GIS. Water Resources Management, 21(4): 699-715. https://doi.org/10.1007/s11269-006-9059-6
  5. Dandge K.P., and Patil S.S. 2022. Spatial distribution of ground water quality index using remote sensing and GIS techniques. Applied Water Science, 12(1): 1-18. https://doi.org/10.1007/s13201-021-01546-7
  6. Dokou Z., Kourgialas N.N., and Karatzas G.P. 2015. Assessing groundwater quality in Greece based on spatial and temporal analysis. Environmental Monitoring and Assessment, 187(12): 1-18. https://doi.org/10.1007/s10661-015-4998-0
  7. Dolatkordestani M., Nohegar A., and Janizadeh S. 2019. Groundwater quality zoning using WQI and Geo-statistical Methods for various consumptions. Desert Ecosystem Engineering Journal, 8(24): 95-108 (In Persian). http://dx.doi.org/10.22052/deej.2018.7.24.59
  8. Eftekhari M., Eslaminezhad S.A., Haji Elyasi A., and Akbari M. 2021. Geostatistical Evaluation with Drinking Groundwater Quality Index (DGWQI) in Birjand Plain Aquifer. Environment and Water Engineering, 7(2): 267-278 (In Persian). https://doi.org/10.22034/jewe.2021.256731.1464
  9. Egbueri J.C. 2020. Groundwater quality assessment using pollution index of groundwater (PIG), ecological risk index (ERI) and hierarchical cluster analysis (HCA): a case study. Groundwater for Sustainable Development, 10, 100292. https://doi.org/10.1016/j.gsd.2019.100292
  10. Eldaw E., Huang T., Mohamed A.K., and Mahama Y. 2021. Classification of groundwater suitability for irrigation purposes using a comprehensive approach based on the AHP and GIS techniques in North Kurdufan Province, Sudan. Applied Water Science, 11(7): 1-19. https://doi.org/10.1007/s13201-021-01443-z
  11. El-Zeiny A.M., and Elbeih S.F. 2019. GIS-based evaluation of groundwater quality and suitability in Dakhla Oases, Egypt. Earth Systems and Environment, 3(3): 507-523. https://doi.org/10.1007/s41748-019-00112-1
  12. Gao Y., Qian H., Ren W., Wang H., Liu F., and Yang F. 2020. Hydrogeochemical characterization and quality assessment of groundwater based on integrated-weight water quality index in a concentrated urban area. Journal of Cleaner Production, 260, 121006. https://doi.org/10.1016/j.jclepro.2020.121006
  13. Ghodsipour S.H. 2002. Analytical Hierarchy Process (AHP). Amirkabir University press, Tehran (In Persian).
  14. Heshmati S.S., and Beigi Harchegani H. 2014. A GIS-based Assesment of Drinking Quality of Shahrekord Groundwater using an Index. Journal of Science and Technology of Agriculture and Natural Resources, 18(69): 179-191 (In Persian).
  15. Hosseini Moghari S.M., and Ebrahimi K. 2015. Development of a Fuzzy Water Quality Index (FWQI)-Case study: Saveh Plain. Water and Soil, 29(5): 1117-111130 (In Persian).
  16. Hu H., Lin T., Wang S., and Rodriguez L.F. 2017. A cyberGIS approach to uncertainty and sensitivity analysis in biomass supply chain optimization. Applied Energy, 203, 26-40. https://doi.org/10.1016/j.apenergy.2017.03.107
  17. Huang I.B., Keisler J., and Linkov I. 2011. Multi-criteria decision analysis in environmental sciences: Ten years of applications and trends. Science of The Total Environment, 409(19): 3578-3594. https://doi.org/10.1016/j.scitotenv.2011.06.022
  18. Karakuş C.B. 2019. Evaluation of groundwater quality in Sivas province (Turkey) using water quality index and GIS-based analytic hierarchy process. International Journal of Environmental Health Research, 29(5): 500-519. https://doi.org/10.1080/09603123.2018.1551521
  19. Keshavarz A., Khashei-siuki A., and Najafi M.H. 2014. Locating of suitable area of pumping drinking water using FAHP method (Case study: Birjand aquifer). Journal of Water and Wastewater; Ab va Fazilab, 25(3): 135-142. (In Persian).
  20. Kordi M. 2008. Comparison of Fuzzy and Crisp Analytic Hierarchy Process (AHP) Methods for Spatial Multicriteria Decision Analysis in GIS. Master. Thesis, University of Gavle. http://hig.divaportal.org/smash/get/diva2:120251/FULLTEXT01
  21. Mohebbi Tafreshi A., and Mohebbi Tafreshi G. 2017. Qualitative zoning of groundwater for drinking purposes in Lenjan plain using GQI method through GIS. Environmental Health Engineering and Management Journal, 4(4): 209-215. http://dx.doi.org/10.15171/EHEM.2017.29
  22. Nath A.V., Selvam S., Reghunath R., and Jesuraja K. 2021. Groundwater quality assessment based on groundwater pollution index using Geographic Information System at Thettiyar watershed, Thiruvananthapuram district, Kerala, India. Arabian Journal of Geosciences, 14(7):1-26. https://doi.org/10.1007/s12517-021-06820-1
  23. 2016. Studies on updating water resources balance in the study area of watershed level2 of Lut Desert. Iran Water Resources Management Company. third revision (In Persian).
  24. Saaty T.L. 1980. The analytical hierarchy process, planning, priority. Resource allocation. RWS publications, USA.
  25. Schoeller H. 1965. Qualitative evaluation of groundwater resources. Methods and techniques of groundwater investigations and development. UNESCO, 5483.
  26. Shahidi A., and Khadempour F. 2020. Investigating the Qualitative Satus of Groundwater in the Plain of Khorasan Razavi Province Using GWQI and AWQI Indexes and Its Zoning with Geographic Information System (GIS). Hydrogeomorphology, 7(22): 1-20 (In Persian). https://dx.doi.org/10.22034/hyd.2020.10802
  27. Southern Khorasan Regional Water Company. 2008. Report on prolongation of the prohibition of the study area of Birjand. 4616.(In Persian).
  28. SubbaRao N. 2012. PIG: a numerical index for dissemination of groundwater contamination zones. Hydrological Processes, 26(22): 3344-3350.
  29. SubbaRao N.S., Sunitha B., Rambabu R., SubbaRao P.V., SubbaRao P.S., Spandana B.D., Sravanthi M., and Marghade D. 2018. Quality and degree of pollution of groundwater, using PIG from a rural part of Telangana State, India. Applied Water Science, 8(8): 1-13. https://doi.org/10.1007/s13201-018-0864-x
  30. Tiwari A.K., Singh A.K., and Mahato M.K. 2018. Assessment of groundwater quality of Pratapgarh district in India for suitability of drinking purpose using water quality index (WQI) and GIS technique. Sustainable Water Resources Management, 4(3): 601-616. https://doi.org/10.1007/s40899-017-0144-1
  31. Yunus R.M., Samadi Z., Yusop N.M., and Omar, D. 2013. Expert choice for ranking heritage streets. Procedia-Social and Behavioral Sciences, 101, 465-475. https://doi.org/10.1016/j.sbspro.2013.07.220
  32. Zhou Y., Li P., Chen M., Dong Z., and Lu C. 2021. Groundwater quality for potable and irrigation uses and associated health risk in southern part of Gu’an County, North China Plain. Environmental Geochemistry and Health, 43(2): 813-835. https://doi.org/10.1007/s10653-020-00553-y