نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته رشته سازه های آبی، بخش کشاورزی، دانشگاه شهید باهنر کرمان

2 دانشیار گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان

3 دانشیار بخش مهندسی آب دانشگاه باهنر کرمان

4 دانشیار بخش مهندسی آب دانشگاه شهید باهنر کرمان

10.22103/nrswe.2023.20470.1018

چکیده

از موارد رایج عملکرد نامطلوب شبکه­ های توزیع آب، عدم قطعیت­ در تقاضای آب برنامه ­ریزی شده و تغییرات در مقادیر زبری لوله ­ها است. در این تحقیق مدلی برای بهینه ­سازی شبکه ­هایی که اجرا شده ­اند ولی نیاز به استحکام بخشی تحت شرایط عدم قطعیـت دارند، توسعه داده شده است. در این  مدل، شبیه ­ساز EPANET با الگوریتم بهینه ­سازی ژنتیک در محیط برنامه ­نویسی متلب تلفیق شده است. به این صورت که ابتدا با استفاده از مفهوم منطق فازی، توابع عضویت فازی پارامترهای ورودی (تقاضای گرهـی و ضـریب زبری لوله) ایجاد شده است، سپس با در نظر گرفتن ارتباط بین تقاضاها و هد فشاری مورد نیاز گره ­ها و استفاده از روش تأثیر (Gupta and Bhave 2007) مدل بهینه ­سازی فازی به مدل قطعی تبدیل شده و نهایتاً با استفاده از الگوریتم ژنتیک قطر لوله ­هایی که بایستی به موازات لوله­ های موجود کارگذاری شوند به­ دست می­آید. روش ایجاد شده برای یک شبکه نمونه از تحقیقات گذشته با تغییر سطح عدم قطعیت­ بررسی شد که نتایج حاکی از افزایش 28 درصدی هزینه شبکه با افزایش50 درصدی عدم قطعیت ­های در نظر گرفته شده و کاهش 5/7 درصدی هزینه با اعمال 75/0 متر تلورانس در هد فشاری مورد نیاز بود. روش پیشنهاد شده بر اساس الگوریتم ژنتیک کاملاً مناسب بوده و جوابی را ایجاد می­کند که فشارهای مورد نیاز در بدترین وضعیت ایجاد شده تأمین شود.

کلیدواژه‌ها

عنوان مقاله [English]

Optimal Design of Water Distribution Network under Hydraulic Uncertainties and Robusting

نویسندگان [English]

  • samira goharimoghadam 1
  • Majid Rahimpour 2
  • Kourosh qaderi 3
  • mohammad mehdi ahmadi 4

1 M.Sc. student of water structures, department of water engineering shahid bahonar university of kerman.

2 Professor Dept. of Irrigation(Water Engineering Group) Faculty of Agriculture Shahid Bahonar Univ. of Kerman Kerman IRAN

3 Associ. Prof. of water Eng., department of water engineering, shahid bahonar university of kerman.

4 Associ. prof. of water Eng., department of water engineering shahid bahonar university of kerman

چکیده [English]

Uncertainty in the planned water demand and changes in the roughness values ​​of the pipes are among the common cases of unfavorable performance of water distribution networks. In this research, a model has been developed to optimize networks that have been implemented but need to be strengthened under conditions of uncertainty. In this model, the EPANET simulator model was combined with optimization genetic algorithm in MATLAB programming environment. In such a way that it is first created using the concept of fuzzy logic, fuzzy membership functions of the input parameters(nodal demand and pipe roughness coefficient), then by considering the relationship between demands and pressure head requirements at nodes and using (Gupta and Bhave 2007) impact method The fuzzy optimization model is converted to a deterministic model and finally, the diameter of the pipes that should be installed parallel to the existing pipes is obtained by using the genetic algorithm. The method created for a typical network from past researches is checked by changing the uncertainty level, the results indicated a 28% increase in the cost of the network with a 50% increase in considered uncertainties and a 7.5% decrease in cost by applying a tolerance of 0.75 meters in the desirable pressure head. The proposed method based on the genetic algorithm is completely suitable and creates a solution that provides the required pressures in the worst situation variables.

کلیدواژه‌ها [English]

  • Nodals demand
  • Fuzzy approach
  • Pipes roughness
  • Uncertainty
  • Pressure head
  1. Bhave P. R., and Gupta R. 2004. Optimal design of water distribution networks for fuzzy demands. Journal of Civil Engineering and Environmental Systems, 21(4): 229–245. https://www.tandfonline.com/doi/abs/10.1080/10286600412331314564
  2. Dongre Shilpa R., and Gupta R. 2017. Optimal design of water distribution network under hydraulic uncertainties Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 3(3): 1-11. https://ascelibrary.org/doi/abs/10.1061/AJRUA6.0000903
  3. Gupa R., and Bhave P. R. 2007. Fuzzy parameters in pipe network analysis. Journal of Civil Engineering And Environmental Systems, 24(1): 33–54.
  4. Haghighi A., and Zahedi Asl A. 2014. Uncertainty analysis of water supply networks using the fuzzy set theory and NSGA-II. Journal of Engineering Application of Artificial Intelligence 32(2014): 270-282. https://rms.scu.ac.ir/Files/Articles/Journals/Abstract/uncertanity.pdf201451264247191.pdf
  5. Kapelan Z. S., Savic D. A., and Walters G. A. 2005. Multi- objective design of water distribution systems under uncertainty. Journal of Water Resources Research, 41(11):1-15. https://www.researchgate.net/publication/235694743_Multiobjective_design_of_water distribution_systems_under_uncertainty
  6. Karmakar S. 2011. Propagation of uncertainty in water distribution systems modeling. Journal of Desalination And Water Treatment, 33(13): 107-117. https://www.deswater.com/DWT_abstracts/vol_33/33_2011_107.pdf
  7. Pandey P., Dongre Sh., and Gupta R. 2020. Probabilistic and fuzzy approaches for uncertainty consideration in water distribution. Journal of Water Supply, 20(1): 13-27. https://www.semanticscholar.org/paper/Probabilistic-and-fuzzy-approaches-for-uncertainty-Pandey-Dongre/f1bb1ebe6929ae8a261e3b1da498f2b66ebb78e8
  8. Revelli, R., and Ridolfi, L. 2002. Fuzzy approach for analysis of pipe networks. Journal of Hydraulic Engineering, 128(1): 93–101. https://ascelibrary.org/doi/10.1061/%28ASCE%2907339429%282002%29128%3A1%2893%29
  9. Shibu A., and Reddy M. J. 2012. Least cost design of water distribution network under demand uncertainty by fuzzy–cross entropy method. Journal of Environmental Research and Development, 6(3A): 853–862. https://www.academia.edu/7371685/Least_cost_design_of_water_distribution_Network_under_demand_uncertainty_by_fuzzy_cross_entropy_method
  10. Sarbu I., Popa-Albu S., and   Tokar A. 2020. Multi-objective optimization of water distribution networks: An overview. International Journal of Advanced and Applied Sciences, 7(11): 74-86. http://science-gate.com/IJAAS/Articles/2020/2020-7-11/1021833ijaas202011008.pdf
  11. Shibu A., and Reddy M. J. 2014. Optimal design of water distribution networks considering fuzzy randomness of demands using crossentropy optimization. Journal of Water Resources Management, 28(12): 4075–4094. https://ideas.repec.org/a/spr/waterr/v28y2014i12p4075-4094.html
  12. Seifollahi-Aghmiuni S., Bozorg-Haddad O., Omid M.H. and Marino M.A. 2013a. Effect of pipe roughness on water distribution network performance during its operational period. Journal of Water Resource Management, 27(5): 1581-1599. https://www.researchgate.net/publication/235770579_Effects_of_Pipe_Roughness_Uncertainty_on_Water_Distribution_Network_Performance_During_its_Operational_Period
  13. Seifollahi-Aghmiuni S., Bozorg-Haddad O. and Marino M.A. 2013b. Water distribution network risk analysis under simultaneous consumption and roughness uncertainties. Journal of Water Resource Management, 27(7): 2595-2610. https://www.researchgate.net/publication/235770574_Water_Distribution_Network_Risk_Analysis_Under_Simultaneous_Consumption_and_Roughness_Uncertainties
  14. Xu C., and Goulter I. C. 1999a. Optimal design of water distribution networks using fuzzy optimization. Journal of Civil Engineering and Environmental Systems, 16(4): 243–266. https://www.tandfonline.com/doi/abs/10.1080/02630259908970266