نوع مقاله : مقاله پژوهشی

نویسنده

گروه علوم و مهندسی محیط زیست، دانشگاه تهران، تهران.

10.22103/nrswe.2023.20582.1019

چکیده

سیل به‌عنوان یکی از پرمخاطره‌ترین بلایایی طبیعی شناخته می‌شود که باید در مدیریت بحران به آن توجه ویژ‌ه‌ای داشت. یکی از وظایف مدیران در زمینه کاهش و پیشگیری از خسارات سیل، پهنه‌بندی و طبقه‌بندی خطر سیل است. بنابراین برای جلوگیری از وقوع سیل شناسایی مناطق دارای خطر سیل‌خیزی بسیار با اهمیت است. در شهرستان روانسر نیز به دلیل سیل‌خیز بودن منطقه و خسارات مالی و جانی ناشی از سیل که هرساله اتفاق می‌افتد لازم است مناطق خطرپذیر شناسایی شود و در این پژوهش به پهنه‌بندی پتانسیل سیل‌خیزی شهرستان روانسر و معرفی مناطق مستعد سیل پرداخته شده است. با توجه به اهداف پژوهش، به‌منظور بررسی پتانسیل سیل‌خیزی از سیستم اطلاعات جغرافیایی و فرآیند سیستم تحلیل سلسله مراتبی استفاده شده است. برای تهیه نقشه پتانسیل سیل از معیارهای شیب، ارتفاع، تراکم پوشش گیاهی، فاصله از رودخانه، بارش و کاربری اراضی به‌عنوان معیارهای موثر در وقوع سیل در منطقه استفاده شده است. این معیارها با استفاده از نظر کارشناسان و پرسشنامه تهیه شدند و پس از وزن‌دهی و تلفیق لایه‌ها، نقشه پهنه‌بندی پتانسیل سیل‌خیزی روانسر در پنج پهنه بدست آمد. براساس نتایج نقشه خطر سیل‌خیزی، قسمت‌های جنوبی این شهرستان در پهنه خطر سیل زیاد و خیلی زیاد با پوشش منطقه‌ای 8/24 و 6/21 درصد قرار دارند. این مناطق دارای نفوذپذیری پایین، شیب کم (0 تا 5 درجه)، ارتفاع پایین (1126 تا 1508 متر)، تراکم کم پوشش گیاهی، بارش زیاد (814 میلی‌متر)، نزدیکی و مجاورت به رودخانه‌ها و کاربری مسکونی هستند که در ردیف مناطق مستعد خطر سیل نسبت به سایر بخش‌ها قرار گرفته ­اند.

کلیدواژه‌ها

عنوان مقاله [English]

Flood Zoning Hazard in Ravansar Using Analytical Hierarchy Process

نویسنده [English]

  • Rasoul Bagherabadi

Department of Environmental science, University of Tehran, Tehran

چکیده [English]

In crisis management, flood risk is one of the riskiest natural disasters that have to special look to it. One of the most important tasks in the field of flood mitigation and prevention of occurrence is zoning of potential flooding and classification of the flood risk. To prevent the occurrence of floods, it is necessary to identify areas having high potential for this phenomenon. Because the area of Ravansar is highly flood-producing and because of financial as well as physical damages caused by floods each year, we need to identify risk areas. The present study seeks to offer a method for zoning the flood-producing potentials of Ravansar. According to the research objectives, ArcGIS and AHP were used to investigate the flood-producing potential of study area. For this purpose, slope, elevation, NDVI, rain, distance from stream and land use as effective parameters in flooding in the studied were selected. After the experts familiar with the watershed completed the questionnaire, these parameters were weighted. Using the results of weighting, the flooding potential zoning map was then calculated. Based on the results flood hazard potential was zoned and finally, the was categorized into five classes based on flood hazard risk, southern part of Ravansar have been introduced as areas prone to flooding that are included respectively %24/8 and %21/6 of the area with low permeability and slow slope (0-5 degree), low altitude (1126-1508 m), near from the stream, low NDVI, high rain (814 millimeter) and urban land use to the other sectors.

کلیدواژه‌ها [English]

  • Zoning
  • AHP
  • Flood
  • Ravansar
  • Natural Disasters
  1. Adab H., Kanniah K. D., and Solaimani K. 2013. Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques. Natural hazards, 65(3): 1723-1743. https://doi.org/10.1007/s11069-012-0450-8
  2. Armenakis C., and Nirupama N. 2014. Flood risk mapping for the city of Toronto. Procedia Economics and Finance, 18: 320-326. https://doi.org/10.1016/S2212-5671(14)00946-0
  3. Azadi F., Sadough S. h., Ghahroudi M., and Shahabi H. 2020. Zoning of Flood Risk in Kashkan River basin using Two Models WOE and EBF. Journal of Geography and Environmental Hazards, 9(1): 45-60. https//:org/20.1001.1.23221682.1399.9.1.3.1 (In Persian).
  4. Azizian A., and Shokoohi A. 2015. Investigation of the Effects of DEM Creation Methods on the Performance of a Semidistributed Model: TOPMODEL. Journal of Hydrologic Engineering, 20(11): 1-9. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001204.
  5. Bagherabadi R., Shikhkanloo Milan F., and Zarei Mohammadabad M. 2022. Evaluation of fire risk in the Zagros forests (Case study: Dalahu County). Ecosystem Management, 1(3): 60-72. https://doi.org/20.1001.1.28210182.1401.1.3.6.2 (In Persian).
  6. Das S. 2019. Geospatial mapping of flood susceptibility and hydro-geomorphic response to the floods in Ulhas basin, India. Remote Sensing Applications: Society and Environment, 14: 60-74. https://doi.org/10.1016/j.rsase.2019.02.006
  7. Davandi K., Shahabi H., and Salari M. 2021. Flood hazard mapping in Ilam city using evidential belief function model. Journal of Geography and Environmental Hazards, 10(2): 1-20. https://doi.org/20.1001.1.23221682.1400.10.2.1.8 (In Persian).
  8. Djordjevic B., and Bruck S. 1989. Systems approach to the selection of priority areas of erosion control, with emphasis on the implications of the water resources subsystem. International symposium on river sedimentation, 4. 1547-1554. http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6664380
  9. Fernández D., and Lutz M. A. 2010. Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis. Engineering Geology, 111(1-4): 90-98. https://doi.org/10.1016/j.enggeo.2009.12.006
  10. Ghanavati E., Safari A. A., Beheshti Javid E., and Mansourian E. 2014. Flood risk zonation using compilation CN model and AHP via GIS (Case study: River Basin Balekhlo). Physical Geography Quarterly 7(25): 67-80. https://doi.org/20.1001/20085656/1393/7/25/6/2 (In Persian).
  11. Ghanbari Y., Komasi H., Jamini D., and Arianpour A. 2012. Identifying and Prioritizing Tourism Attractions in Ravansar Based on Tourist Attracting Potentials. Geography and Environmental Sustainability, 2(3): 65-86. https://ges.razi.ac.ir/article_167.html?lang=en (In Persian).
  12. Ghobadi, M., Ahmadipari M., and Salehi E. 2016. Flood Risk Assessment and Zoning of Human Settlements in line with Sustainable Development using Fuzzy AHP in GIS Envoronmnet and DPSIR Model (Case study: Abali). Journal of Environmental Science and Technology, 18(3): 351-363. https://jest.srbiau.ac.ir/article_9837.html?lang=en (In Persian).
  13. Hasanzadeh M., and Khajebafghi H. 2017. Flood Hazard Zoninig Using Multiple Criteria Decision Analysis System (Case Study: Sheytoor Watershed in Bafgh). journal of watershed management research, 7(4): 37-29. https://doi.org/20.1001/1/1/22516174/1395/7/14/4/6 (In Persian).
  14. Kia M. B., Pirasteh S., Pradhan B., Mahmud A. R., Sulaiman W. N. A., and Moradi A. 2012. An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environmental earth sciences, 67(1): 251-264. https://doi.org/10.1007/s12665-011-1504-z
  15. Lajavardi, Lajevardi S., and Sattari S. 2013. Zoning the Flood Bearing Mordaghchai Watershed (Eastern Azerbaijan). Geography and Planning, 17(44): 237-255. https://geoplanning.tabrizu.ac.ir/article_27_1.html?lang=en (In Persian).
  16. Mahmoudzadeh H., Yari F., and Vahedi A. 2017. The Application of Remote sensing and GIS Techniques for Flood Risk Zoning Multi Criteria Approach, Urmia, Iran. Physical Geography Research Quarterly, 49(4): 719-730. https://doi.org/ 10.22059/JPHGR.2018.210916.1006894 (In Persian)
  17. Malekian A., Oftadegan Khuzani A., and Ashurnejad G. 2012. Flood Hazard Zoning in Watershed Scale using Fuzzy Logic, (Case study: Akhtar Abad Watershed). Physical Geography Research Quarterly, 44(4): 131-152. https://doi.org/10.22059/jphgr.2012.30246 (In Persian).
  18. Najafi E., and Karimi Kerdabadi M. 2020. Flood Risk Evaluation and Zoning using with AHP-Fuzzy Combined Model with Emphasis on Urban Safety (Case Study: Region 1 of Tehran Municipality). Journal of Geography and Environmental Hazards, 9(2): 43-60. https://doi.org/10.22067/geo.v9i2.86110 (In Persian).
  19. Nasiri, V., Sadeghi, S.M.M., Bagherabadi, R., Moradi, F., Deljouei, A., and Borz, S.A. (2022). Modeling wildfire risk in western Iran based on the integration of AHP and GIS. Environmental Monitoring and Assessment, 194(9), 1-13. https://doi.org/10.1007/s10661-022-10318-y
  20. Nasrinnejad N., Rangzan K., Kalantari N. and Saberi A. 2014. Flood hazard potential zonation of Baghan watershed using fuzzy analytic hierarchy process method (FAHP). Journal of RS and GIS for Natural Resources, 5(4): 15-34. https://girs.bushehr.iau.irarticle_516653.html?lang=en (In Persian).
  21. Nonomura A., Masuda T., and Moriya H. 2007. Wildfire damage evaluation by merging remote sensing with a fire area simulation model in Naoshima, Kagawa, Japan. Landscape and Ecological Engineering, 3(2): 109-117. https://doi.org/10.1007/s11355-007-0026-z
  22. Ozturk, Yilmaz I., and Kirbas U. 2021. Flood hazard assessment using AHP in Corum, Turkey. Tecnología y ciencias del agua, 12(2): 379-415. https://doi.org/10.24850/j.tyca-2021-02-08
  23. Panahi R., Hoseinzadeh M. M., and Khaleghi S. 2021. Zonation of flood hazard probability in Gamasiab river banks from Sahneh to Bisetoon - Kermanshah province. Journal of Natural Environmental Hazards, 10(28): 53-66.https://doi.org/ 10.22111/JNEH.2020.33492.1635 (In Persian).
  24. Pourghasemi H. R., Beheshtirad M., and Pradhan B. 2016. A comparative assessment of prediction capabilities of modified analytical hierarchy process (M-AHP) and Mamdani fuzzy logic models using Netcad-GIS for forest fire susceptibility mapping. Geomatics, Natural Hazards and Risk, 7(2): 861-885. https://doi.org/10.1080/19475705.2014.984247
  25. Rahmani S., Azizian A., and Samadi A. 2019. Determining the Flood Hazard Level of Mazandaran Sub-Basins Using a GIS-based Distributed Method. Journal of Hydraulics, 14(1): 123-139. https://doi.org/10.30482/jhyd.2019.155838.1342 (In Persian)
  26. Rostami F., Tavakoli M., Rostami N., and Ebrahimi H. 2021. Investigation of Flood Hazard Potential in Watersheds Using AHP (Case Study: Ilam City Watershed). Integrated Watershed Management, 1: 1-16. https://doi.org/10.22034/IWM.2021.247934 (In Persian)
  27. Rostami M., Hesami D., salmani H., and Tymoriyan T. 2020. Urban Flood Hazard Zoning Using Multicriteria Decision Analysis (Emam Ali town, Mashhad city). Journal of Environmental Science and Technology, 21(11): 173-185. https://doi.org/10.22034/JEST.2020.21852.3091 (In Persian).
  28. Sharifi F., Saghafian B., and Telvari A. 2002. The Great 2001 flood in Golestan Province. Iran: Causes and consequences. International conference on flood estimation, switzerland. 11-17. https://researchgate.net/publication/236229926_great_2001_flood_in_Golestan_province_Iran_Causes_and_consequences
  29. Yamani M., and Abbasi M. 2020. Evaluation of Flooding below Gadar Catchments based on Morphometric Parameters and Statistical Correlation. Town and Country Planning, 12(1): 205-224. https://doi.org/10.22059/JTCP.2020.293947.670048 (In Persian).