نوع مقاله : مقاله پژوهشی

نویسندگان

1 جویای کار پژوهشگر آزاد

2 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران

3 گروه علوم خاک، دانشکده کشاورزی، دانشگاه رفسنجان، رفسنجان، ایران

10.22103/nrswe.2023.21003.1028

چکیده

 برای افزایش بهره‌وری محصولات کشاورزی و بهبود ویژگی‌های خاک از کود حیوانی استفاده می‌شود. ریزجانداران بیماری‌زای موجود در کود دامی سبب آلودگی محیط ‌زیست می‌شود. لذا نیاز است اثر دانه‌بندی کود گاوی بر ویژگی‌های فیزیکی مانند هدایت هیدرولیکی و آب‌گریزی کود بررسی شود تا مبنایی برای سایر پژوهش‌های آلودگی منابع آب و خاک قرار گیرد. هدف این پژوهش بررسی اثر اندازه کود گاوی بر هدایت هیدرولیکی اشباع و آب‌گریزی کود گاوی می‌باشد. بدین منظور چهار تیمار دانه‌بندی (2-1D1:، 1- 5/0D2:، 5/0- 25/0D3: و کوچکتر از 25/0> میلیمتر D4:) تهیه شد. هدایت هیدرولیکی اشباع با روش بار ثابت و آزمایش آب‌گریزی با روش زمان نفوذ قطره آب انجام شد نتایج به دست آمده نشان داد با کاهش اندازه ذرات کود گاوی هدایت هیدرولیکی اشباع به صورت معنی‌داری  در سطح آماری 1 درصد کاهش می‌یابد. به ترتیب بیشترین و کمترین هدایت هیدرولیکی اشباع مربوط به تیمار D4 با هدایت هیدرولیکی 6/1 سانتیمتر بر دقیقه و D1 با هدایت هیدرولیکی 063/0 سانتیمتر بر دقیقه بود. دلیل این امر، کاهش اندازه منافذ در دانه‌بندی‌های کوچک می‌باشد. کاهش اندازه ذرات کود گاوی موجب  افزایش آب‌گریزی می‌شود. به ترتیب بیشترین و کمترین درجه آب‌گریزی مربوط به تیمار D1 و تیمار D4  می‌باشد. دلیل این امر، وجود ذرات میکروبی غنی از اسیدهای چرب در تیمارهای دانه‌بندی کوچکتر می‌باشد. به نظر می‌رسد که استفاده از کود گاوی درشت دانه در کشاورزی به دلیل هدایت هیدرولیکی بالاتر و عدم آب‌گریزی گزینه مناسب‌تری نسبت به کود گاوی ریزدانه باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Investigating the Changes of Saturated Hydraulic Conductivity and Water Repellency Under the Influence of the Particle Size of Cattle Manure

نویسندگان [English]

  • Mehrnoush Dehghanian 1
  • Hasan Tabatabaee 2
  • hossein shirani 3

1 Researcher

2 depth of water engineering, agricultral college, shahrekord university, shahre kord, Iran

3 depth of soil seince, agricultral college, rafsanjan, Iran

چکیده [English]

Animal manure is used to increase the productivity of agricultural products and improve soil properties. Pathogenic microorganisms present in animal manure cause environmental pollution. Therefore, it is necessary to investigate the effect of cattle manure granulation on physical characteristics such as hydraulic conductivity and hydrophobicity of manure in order to be a basis for other researches on water and soil pollution. The aim of this research is to investigate the effect of cow manure size on saturation hydraulic conductivity and hydrophobicity of cow manure. For this purpose, four granulation treatments were prepared (D1-1-2, D2-0.5-1, D3-0.25-0.5 and D4>0.25 mm smaller). Saturated hydraulic conductivity was done by constant load method and water repellency test was done by water drop penetration time method. The obtained results showed that by reducing the size of cow dung particles, saturated hydraulic conductivity decreases significantly at a statistical level of 1%. Respectively, the highest and lowest saturation hydraulic conductivity was related to treatment D4 with hydraulic conductivity of 1.6 cm/min and D1 with hydraulic conductivity of 0.063 cm/min. The reason for this is to reduce the pore size in small grains. Reducing the particle size of cow dung increases water repellency. The highest and lowest degree of water repellency is related to treatment D1 and treatment D4, respectively. The reason for this is the presence of microbial particles rich in fatty acids in smaller granulation treatments. It seems that the use of coarse-grained cow manure in agriculture is a more appropriate option than fine-grained cow manure due to its higher hydraulic conductivity and lack of hydrophobicity.

کلیدواژه‌ها [English]

  • Cattle manure granulation
  • Constant load method
  • Water drop penetration time method
  • Physical properties of cow manure
  1. Almendros G., Martin F., and González-Vila F. J. 1988. Effects of fire on humic and lipid fractions in a Dystric Xerochrept in Spain, Geoderma, 42(2): 115-127. https://doi.org/10.1016/0016-7061(88)90028-6.
  2. Benson C., and Gribb M. 1997. Measuring unsaturated hydraulic conductivity in the laboratory and the field. Geotechnical Special Publication, (1):113-168.
  3. Bisdom E. B. A., Dekker L. W., and Schoute J. T. 1993. Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure. In Soil Structure/Soil Biota Interrelationships. International Workshop on Methods of Research on Soil Structure/Soil Biota Interrelationships, 1(1): 105-118. https://doi.org/10.1016/B978-0-444-81490-6.50013-3
  4. Boadu F. K. 2000. Hydraulic conductivity of soils from grain-size distribution: new models. Journal of Geotechnical and Geoenvironmental Engineering, 126(8): 739-746. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:8(739)
  5. Chapuis R. 2012. Predicting the saturated hydraulic conductivity of soils: a review. Bulletin of Engineering Geology and the Environment, (71):401-434. https://doi.org/10.1007/s10064-012-0418-7
  6. Clothier B. E., Vogeler I., and  Magesan G N. 2000. The breakdown of water repellency and solute transport through a hydrophobic soil. Journal of Hydrology, 231(1): 255-264. https://doi.org/10.1016/S0022-1694(00)00199-2
  7. Dekker L W., Doerr S H., Oostindie K., Ziogas A K., and Ritsema C. J. 2001. Water repellency and critical soil water content in a dune sand. Soil Science Society of America Journal, 65(6): 1667-1674. https://doi.org/10.2136/sssaj2001.1667
  8. Dekker L. W., and Ritsema C. J. 2003. Uneven moisture patterns in water repellent soils. Geoderma, 70(2-4): 87-99. https://doi.org/10.2136/2008.soilsciencestepbystep.c8
  9. Doerr S. H., Shakesby R. A., and Walsh R. P. 1996. Soil hydrophobicity variations with depth and particle size fraction in burned and unburned Eucalyptus globulus and Pinus pinaster forest terrain in the Agueda Basin, Portugal. Catena 27(1): 25-47. https://doi.org/10.1016/0341-8162(96)00007-0
  10. Hagedorn C,.and McCoy E. L. 1979. Soil suitability for on-site waste disposal: development of genetically marked Escherichia coli strains as tracers of subsurface water flow. Completion Report for Project A-039-ORE. Water Resource And Technology,(1):22-38.
  11. Hallett P. D., White N. A., and Ritz K. 2006. Impact of basidiomycete fungi on the wett ability of soil contaminated with a hydrophobic polycyclic aromatic hydrocarbon. Biologia, 61(19): S334-S338. https://doi.org/10.2478/s11756-006-0184-8
  12. Hallin I. L., Douglas P., Doerr S. H., and Bryant R. 2015. The effect of addition of a wettable biochar on soil water repellency. European Journal of Soil Science, 66(6): 1063-1073. https://doi.org/10.1111/ejss.12300
  13. Hepperly P., Lotter D., Ulsh C. Z., Seidel R. and Reider C. 2009. Compost, manure and synthetic fertilizer influences crop yields, soil properties, nitrate leaching and crop nutrient content. Compost Science & Utilization, 17(2): 117-126. https://doi.org/10.1080/1065657X.2009.10702410
  14. Hewelke, Szatyłowicz J., Gnatowski T., and Oleszczuk R. 2016. Effects of soil water repellency on moisture patterns in a degraded sapric histosol. Land Degradation & Development, 27(4): 955-964. https://doi.org/10.1002/ldr.2305.
  15. Huysman F., and Verstraete W. 1993. Water-facilitated transport in porous media–evaluation of a model using laboratory observation. Water Resource Research, 28(1): 915-923. https://doi.org/10.1029/91WR02980
  16. Kögel-Knabner I. 2002. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biology and Biochemistry, 34(2): 139-162. https://doi.org/10.1016/S0038-0717(01)00158-4
  17. Kulshreshtha Y., Mota N. J., Jagadish K. S., Bredenoord J. Vardon P. J., van Loosdrecht M. C., and Jonkers H. M. 2020. The potential and current status of earthen material for low-cost housing in rural India. Construction and Building Materials, 247(1): 118615. https://doi.org/10.1016/j.conbuildmat.2020.118615
  18. Leelamanie D. A. L., Karube J., and Yoshida A. 2008. Characterizing water repellency indices: Contact angle and water drop penetration time of hydrophobized sand. Soil Science Plant Nutrition, 54(2): 179-187. https://doi.org/10.1111/j.1747-0765.2007.00232.x
  19. Mataix-Solera J., and Doerr S. H. 2004. Hydrophobicity and aggregate stability in calcareous topsoils from fire-affected pine forests in southeastern Spain. Geoderma, 118(1-2): 77-88. https://doi.org/10.1016/S0016-7061(03)00185-X
  20. McCarthy J. F., and McKay L. D. 2004. Colloid transport in the subsurface: Past, present, and future challenges. Vadose Zone Journal, 3(2): 326-337. https://doi.org/10.2113/3.2.326
  21. McDowell‐Boyer L. M., Hunt J. R., and Sitar N. 1986. Particle transport through porous media. Water Resources Research, 22(13): 1901-1921. https://doi.org/10.1029/WR022i013p01901
  22. McIntosh J. C., and Horne D. J. 1994. Causes of repellency:  The nature of the hydrophobic compounds found in a New Zealand development sequence of yellow-brown sands. In Proceedings of the 2nd National Water Repellency Workshop (pp. 1-5). Perth Western Australia.
  23. Nyamangara J., Gotosa J., and Mpofu S. E. 2001. Cattle manure effects on structural stability and water retention capacity of a granitic sandy soil in Zimbabwe. Soil and Tillage Research, 62(3-4): 157-162. https://doi.org/10.1016/S0167-1987(01)00215-X
  24. Rodriguez-Alleres M., de Blas E., and Benito E. 2007. Estimation of soil water repellency of different particle size fractions in relation with carbon content by different methods. Science of the Total Environment, 378(1-2): 147-150. https://doi.org/10.1016/j.scitotenv.2007.01.034
  25. Roy J. L., and McGill W. B. 2002. Assessing soil water repellency using the molarity of ethanol droplet (MED) test. Soil Science, 167(2): 83-97.
  26. Sepehrnia N., Tabatabaei S. H., Norouzi H., Gorakifard M., Shirani H., Rezanezhad  2021. Particle fractionation controls Escherichia coli release from solid manure. Heliyon, 7(5): e07038. https://doi.org/10.1016/j.heliyon.2021.e07038
  27. Sperry J. M., and Peirce J. J. 1995. A model for estimating the hydraulic conductivity of granular material based on grain shape, grain size, and porosity. Groundwater, 33(6): 892-898. https://doi.org/10.1111/j.1745-6584.1995.tb00033.x
  28. Wallis M.G., and Horne D J. 1992. Soil water repellency. Advances in Soil Science, 20(1): 91–146. https://doi.org/10.1007/978-1-4612-2930-8_2
  29. Wang J P., François B. and Lambert P. 2017. Equations for hydraulic conductivity estimation from particle size distribution: A dimensional analysis. Water Resources Research, 53(9): 8127-813. https://doi.org/10.1002/2017WR020888